wattunna

<a href=http://zawa.blogsome.com>Zawa Clocks</a>

About Me

Foto saya
"Satu hal yang dapat kita ubah adalah satu hal yang dapat kita kontrol, dan itu adalah sikap kita. Saya semakin yakin bahwa hidup adalah 10 persen dari apa yang sebenarnya terjadi pada diri kita, dan 90 persen adalah bagaimana sikap kita menghadapinya"

Follower

Total Tayangan Halaman

Setelah hujan, matahari akan muncul kembali. Begitu juga dengan kehidupan, setelah rasa sakit, bahagia akan datang

Konsep Energi dan Daya Listrik

1. Energi Listrik
Energi listrik merupakan suatu bentuk energi yang berasal dari sumber arus. Energi listrik dapat diubah menjadi bentuk lain, misalnya:
• Energi listrik menjadi energi kalor / panas, contoh: seterika, solder, dan kompor listrik.
• Energi listrik menjadi energi cahaya, contoh: lampu.
• Energi listrik menjadi energi mekanik, contoh: motor listrik.
• Energi listrik menjadi energi kimia, contoh: peristiwa pengisian accu, peristiwa penyepuhan (peristiwa melapisi logam dengan logam lain).

Jika arus listrik mengalir pada suatu penghantar yang berhambatan R, maka sumber arus akan mengeluarkan energi pada penghantar yang bergantung pada:
• Beda potensial pada ujung-ujung penghantar (V).
• Kuat arus yang mengalir pada penghantar (i).
• Waktu atau lamanya arus mengalir (t).

Berdasarkan pernyataan di atas, dan karena harga V = R.i, maka persamaan energi listrik dapat dirumuskan dalam bentuk :
W = V.i.t
= (R.i).i.t
W = i^2.R.t (dalam satuan watt-detik)

dan karena i = V/R, maka persamaan energi listrik dapat pula dirumuskan dengan:
W = i^2.R.t
= (V/R^2.R.t
W = V^2.t/R (dalam satuan watt-detik)

Keuntungan menggunakan energi listrik:
a. Mudah diubah menjadi energi bentuk lain.
b. Mudah ditransmisikan.
c. Tidak banyak menimbulkan polusi/ pencemaran lingkungan.

Energi listrik yang dilepaskan itu tidak hilang begitu saja, melainkan berubah menjadi panas (kalor) pada penghantar. Besar energi listrik yang berubah menjadi panas (kalor) dapat dirumuskan:
Q = 0,24 V i t……kalori
Q = 0,24 i^2 R t…..kalori
Q = 0,24 V^2.t/R….kalori

Jika V, i, R, dan t masing-masing dalam volt, ampere, ohm, dan detik, maka panas (kalor) dinyatakan dalam kalori.

Konstanta 0,24 didapat dari percobaan joule, Di dalam percobaannya Joule menggunakan rangkaian alat yang terdiri atas kalorimeter yang berisi air serta penghantar yang berarus listrik. Jika dalam percobaan arus listrik dialirkan pada penghantar dalam waktu t detik, ternyata kalor yang terjadi karena arus listrik berbanding lurus dengan:
a. Beda potensial antara kedua ujung kawat penghantar (V)
b. Kuat arus yang melalui kawat penghantar (i)
c. Waktu selama arus mengalir (t).

dan hubungan ketiganya ini dikenal sebagai "hukum Joule"

Karena energi listrik 1 joule berubah menjadi panas (kalor) sebesar 0,24 kalori. Jadi kalor yang terjadi pada penghantar karena arus listrik adalah:
Q = 0,24 V.i.t kalori

Daya Listrik
Daya listrik adalah banyaknya energi tiap satuan waktu dimana pekerjaan sedang berlangsung atau kerja yang dilakukan persatuan waktu. Dari definisi ini, maka daya listrik (P) dapat dirumuskan:
Daya = Energi/waktu
P =W/t
P = V.i.t/t
= V.i
P = i^2 R
P = V^2/R (dalam satuan volt-ampere, VA)

Satuan daya listrik :
a. watt (W) = joule/detik
b. kilowatt (kW): 1 kW = 1000 W.

Dari satuan daya maka muncullah satuan energi lain yaitu:
Jika daya dinyatakan dalam kilowatt (kW) dan waktu dalam jam, maka satuan energi adalah kilowatt jam atau kilowatt-hour (kWh).
1 kWh = 36 x 105 joule

Dalam satuan internasional (SI), satuan daya adalah watt (W) atau setara Joule per detik (J/sec). Daya listrik juga diekspresikan dalam watt (W) atau kilowatt (kW). Konversi antara satuan HP dan watt, dinyatakan dengan formula sebagai berikut:

1 HP = 746 W = 0,746 kW
1kW = 1,34 HP

Sedangkan menurut standar Amerika (US standard), daya dinyatakan dalam satuan Hourse Power (HP)atau (ft)(lb)/(sec).

Pemanfaatan Energi Listrik

Di antara peralatan listrik di rumah anda, anda mungkin mempunyai pengering rambut, beberapa lampu, pesawat TV, stereo, oven microwave, kulkas dan kompor listrik. Masing-masing mengubah energi listrik menjadi energi bentuk lain, misalnya energi cahaya, energi kinetik, energi bunyi, atau energi panas. Berapa besarnya energi listrik yang diubah menjadi energi bentuk lain? dan berapa lajunya? Energi yang di catu pada rangkaian dapat digunakan dengan beberapa cara yang berbeda. Motor merubah energi listrik menjadi energi mekanik. Lampu listrik merubah energi listrik menjadi cahaya. Sayangnya tidak semua energi yang diberikan ke motor atau ke lampu dapat dimanfaatkan. Cahaya, khususnya cahaya lampu pijar menimbulkan panas. Motor terlalu panas untuk disentuh. Dalam setiap kasus, ada sejumlah energi yang diubah menjadi panas.
READ MORE - Konsep Energi dan Daya Listrik
Category: 0 komentar

Sifat-Sifat Listrik Dielektrik

Dalam menentukan dimensi suatu sistem isolasi, dibutuhkan pengetahuan yang pasti mengnai jenis, besaran dan durasi tekanan elektrik yang akan dialami bahan isolasi tersebut, dan disamping itu juga perlu untuk mempertimbangkan kondisi sekitar dimana isolasi akan ditempatkan. selain itu, perlu juga untuk mengetahui sifat-sifat dari bahan isolasi sehingga dapat dipilih bahan-bahan yang tepat untuk suatu sistem isolasi, dengan demikian akan dihasilkan suatu rancangan yang paling ekonomis.

Fungsi yang penting dari suatu bahan isolasi adalah:
1. Untuk mengisolasi antara suatu penghantar dengan penghantar lainnya. Misalnya antara konduktor fasa dengan konduktor fasa lainnya, atau konduktor fasa dengan tanah.
2. Untuk menahan gaya mekanis akibat adanya arus pada konduktor yang diisolasi,
3. Mampu menahan tekanan yang diakibatkan panas dan reaksi kimia.

Tekanan yang diakibatkan oleh medan listrik, gaya mekanik, thermal dan reaksi kimia dapat saja terjadi serentak, sehingga perlu diketahui efek bersama dari semua parameter tersebut, dengan kata lain suatu bahan isolasi dinyatakan ekonomis jika bahan tersebut dapat menahan semua tekanan tersebut dalam jangka waktu yang lama.

Sifat listrik yang dibutuhkan untuk suatu bahan isolasi adalah sebagai berikut:
1. Mempunyai kekuatan dielektrik (KD) yang tinggi, agar dimensi sistem isolasi menjadi kecil dan penggunaan bahan semakin sedikit, sehingga harganya pun akan semakin murah.
2. Rugi-rugi dielektriknya rendah, agar suhu bahan isolasi tidak melebihi batas yang ditentukan.
3. Memiliki kekuatan kerak (tracking strength) yang tinggi, agar tidak terjadi erosi karena tekanan listrik permukaan.
4. Memiliki konstanta dielektrik yang tepat dan cocok, sehingga membuat arus pemuatan (charging current) tidak melebihi batas ayang diijinkan.

Bahan isolasi juga sekaligus merupakan bahan konstruksi peralatan, oleh karena itu ia juga memikul beban mekanis, sehingga bahan isolasi harus memenuhi persyaratan mekanis yang dibutuhkan. Sifat mekanis yang dibutuhkan tergantung pada pemakaian, seperti diberikan dibawah ini.

- Isolator hantaran udara, sifat mekanis terpentingnya Kekuatan regangan (tensile strength)

- Isolator pendukung pada gardu, sifat mekanis terpentingnya Kekuatan tekuk (bending strength)

- Isolator antenna, sifat mekanis terpentingnya Kekuatan tekan (pressure strength)

- Pemutus daya (circuit breaker), sifat mekanis terpentingnya Kekuatan tekanan dadakan (bursting pressure withstand)

karakteristik mekanis, seperti elastisitas, kekenyalan dan lain-lain, mempunyai hubungan yang nyata dengan tekanan dan ketepatan rancangan.

Peralatan-peralatan listrik akan mengalami kenaikan suhu selama beroperasi, baik pada tegangan kerja normal maupun dalam kondisi gangguan, sehingga bahan isolasi harus memiliki sifat themal sebagai berikut:
- kemampuan untuk menahan panas tinggi (daya tahan panas)
- kerentanan terhadap perubahan bentuk pada keadaan panas.
- konduktivitas panas tinggi.
- koefisien muai panas rendah.
- tidak mudah terbakar.
- tahan terhadap busur api, dan lain-lain.

bahan isolasi harus dapat menyesuaikan diri terhadap lingkungan dimana bahan itu digunakan. oleh karena itu bahan isolasi harus memiliki kemampuan sebagai berikut:
- memiliki daya tahan terhadap minyak dan ozon.
- memiliki kekedapan dan kekenyalan higroskopis yang tinggi.
- daya serap air rendah.
- stabil ketika mengalami radiasi.

Bahan isolasi untuk sistem tegangan tinggi sering menetapkan beberapa persyaratan, dan diantaranya ada yang saling bertentangan. Oleh karena itu dalam pemilihan bahan isolasi untuk suatu keperluan khusus sering dilakukan dengan mencari kompromi antara penyimpangan kebutuhan dengansifat yang diinginkan, sehingga pemilihan yang benar-benar memuaskan tidak terpenuhi.

ada enam sifat listrik dielektrik, yaitu:
1. Kekuatan dielektrik
2. Konduktansi
3. Rugi-rugi dielektrik
4. Tahanan isolasi
5. Peluahan parsial (partial discharge)
6. Kekuatan kerak isolasi (tracking strength)
READ MORE - Sifat-Sifat Listrik Dielektrik
Category: 0 komentar

Perlengkapan Gardu Induk

Gardu induk merupakan suatu sistem Instalasi listrik yang terdiri dari beberapa perlengkapan peralatan listrik dan menjadi penghubung listrik dari jaringan transmisi ke jaringan distribusi perimer. Perlengkapan peralatan listrik tersebut antara lain:

1. Busbar atau Rel
Merupakan titik pertemuan/hubungan antara trafo-trafo tenaga, Saluran Udara TT, Saluran Kabel TT dan peralatan listrik lainnya untuk menerima dan menyalurkan tenaga listrik/daya listrik. Ada beberapa jenis konfigurasi busbar yang digunakan saat ini, antara lain:

- Sistem cincin atau ring, semua rel/busbar yang ada tersambung satu sama lain dan membentuk seperti ring/cicin.

gambar 1. Sistem Cincin atau ring

- Busbar Tunggal atau Single busbar, semua perlengkapan peralatan listrik dihubungkan hanya pada satu / single busbar pada umumnya gardu dengan sistem ini adalah gardu induk diujung atau akhir dari suatu transmisi.

Gambar 2. Sistem busbar tunggal atau single busbar

- Busbar Ganda atau double busbar, Adalah gardu induk yang mempunyai dua / double busbar . Sistem ini sangat umum, hamper semua gardu induk menggunakan sistem ini karena sangat efektif untuk mengurangi pemadaman beban pada saat melakukan perubahan.

Gambar 3. Sistem Busbar Ganda atau double Busbar.

- Busbar satu setengah atau one half busbar, gardu induk dengan konfigurasi seperti ini mempunyai dua busbar juga sama seperti pada busbar ganda, tapi konfigurasi busbar seperti ini dipakai pada Gardu induk Pembangkitan dan gardu induk yang sangat besar, karena sangat efektif dalam segi operasional dan dapat mengurangi pemadaman beban pada saat melakukan perubahan sistem. Sistem ini menggunakan 3 buah PMT didalam satu diagonal yang terpasang secara seri.

Gambar 4. Sistem Busbar satu setengah atau one half busbar.

2. Ligthning Arrester
biasa disebut dengan Arrester dan berfungsi sebagai pengaman instalasi (peralatan listrik pada instalasi Gardu Induk) dari gangguan tegangan lebih akibat sambaran petir (ligthning Surge) maupun oleh surja hubung ( Switching Surge ).

3. Transformator instrument atau Transformator ukur
Untuk proses pengukuran digardu induk diperlukan tranformator instrumen. Tranformator instrument ini dibagi atas dua kelompok yaitu:

- Transformator Tegangan, adalah trafo satu fasa yang menurunkan tegangan tinggi menjadi tegangan rendah yang dapat diukur dengan Voltmeter yang berguna untuk indikator, relai dan alat sinkronisasi.

- Transformator arus, digunakan untuk pengukuran arus yang besarnya ratusan amper lebih yang mengalir pada jaringan tegangan tinggi. Jika arus yang mengalir pada tegangan rendah dan besarnya dibawah 5 amper, maka pengukuran dapat dilakukan secara langsung sedangkan untuk arus yang mengalir besar, maka harus dilakukan pengukuran secara tidak langsung dengan menggunakan trafo arus (sebutan untuk trafo pengukuran arus yang besar). Disamping itu trafo arus berfungsi juga untuk pengukuran daya dan energi, pengukuran jarak jauh dan rele proteksi.

- Transformator Bantu (Auxilliary Transformator), trafo yang digunakan untuk membantu beroperasinya secara keseluruhan gardu induk tersebut. Dan merupakan pasokan utama untuk alat-alat bantu seperti motor-motor listrik 3 fasa yang digunakan pada motor pompa sirkulasi minyak trafo beserta motor motor kipas pendingin. Yang paling penting adalah sebagai pemasok utama sumber tenaga cadangan seperti sumber DC, dimana sumber DC ini merupakan sumber utama jika terjadi gangguan dan sebagai pasokan tenaga untuk proteksi sehingga proteksi tetap bekerja walaupun tidak ada pasokan arus AC.

Transformator bantu sering disebut sebagai trafo pemakaian sendiri sebab selain fungsi utama diatas, juga digunakan untuk penerangan, sumber untuk sistim sirkulasi pada ruang baterai, sumber pengggerak mesin pendingin (Air Conditioner) karena beberapa proteksi yang menggunakan elektronika/digital diperlukan temperatur ruangan dengan temperatur antara 20ºC -28ºC.

Untuk mengopimalkan pembagian sumber tenaga dari transformator bantu adalah pembagian beban yang masing-masing mempunyai proteksi sesuai dengan kapasitasnya masing-masing. Juga diperlukan pembagi sumber DC untuk kesetiap fungsi dan bay yang menggunakan sumber DC sebagai penggerak utamanya. Untuk itu disetiap gardu induk tersedia panel distribusi AC dan DC.

4. Sakelar Pemisah (PMS) atau Disconnecting Switch (DS)
Berfungsi untuk mengisolasikan peralatan listrik dari peralatan lain atau instalasi lain yang bertegangan. PMS ini boleh dibuka atau ditutup hanya pada rangkaian yang tidak berbeban. Mengenai Sakelar pemisah akan dibahas pada postingan selanjutnya.

5. Sakelar Pemutus Tenaga (PMT) atau Circuit Breaker (CB)
Berfungsi untuk menghubungkan dan memutuskan rangkaian pada saat berbeban (pada kondisi arus beban normal atau pada saat terjadi arus gangguan). Pada waktu menghubungkan atau memutus beban, akan terjadi tegangan recovery yaitu suatu fenomena tegangan lebih dan busur api, oleh karena itu sakelar pemutus dilengkapi dengan media peredam busur api tersebut, seperti media udara dan gas SF6. Mengenai PMT atau CB ini sudah dibahas pada artikel sebelumnya di sini dan sini.

6. Sakelar Pentanahan
Sakelar ini untuk menghubungkan kawat konduktor dengan tanah / bumi yang berfungsi untuk menghilangkan/mentanahkan tegangan induksi pada konduktor pada saat akan dilakukan perawatan atau pengisolasian suatu sistem. Sakelar Pentanahan ini dibuka dan ditutup hanya apabila sistem dalam keadaan tidak bertegangan (PMS dan PMT sudah membuka)

7. Kompensator
Kompensator didalam sistem Penyaluran tenaga Listrik disebut pula alat pengubah fasa yang dipakai untuk mengatur jatuh tegangan pada saluran transmisi atau transformator, dengan mengatur daya reaktif atau dapat pula dipakai untuk menurunkan rugi daya dengan memperbaiki faktor daya. Alat tersebut ada yang berputar dan ada yang stationer, yang berputar adalah kondensator sinkron dan kondensator asinkron, sedangkan yang stationer adalah kondensator statis atau kapasitor shunt dan reaktor shunt.

7. Peralatan SCADA dan Telekomunikasi
Data yang diterima SCADA (Supervisory Control And Data Acquisition) interface dari berbagai masukan (sensor, alat ukur, relay, dan lain lain) baik berupa data digital dan data analog dan dirubah dalam bentuk data frekwensi tinggi (50 kHz sampai dengan 500 kHz) yang kemudian ditransmisikan bersama tenaga listrik tegangan tinggi. Data frekwensi tinggi yang dikirimkan tidak bersifat kontinyu tetapi secara paket per satuan waktu. Dengan kata lain berfungsi sebagai sarana komunikasi suara dan komunikasi data serta tele proteksi dengan memanfaatkan penghantarnya dan bukan tegangan yang terdapat pada penghantar tersebut. Oleh sebab itu bila penghantar tak bertegangan maka Power Line Carrier (PLC) akan tetap berfungsi asalkan penghantar tersebut tidak terputus. Dengan demikian diperlukan peralatan yang berfungsi memasukkan dan mengeluarkan sinyal informasi dari energi listrik di ujung-ujung penghantar. Materi ini akan dibahas lebih lanjut pada artikel selanjutnya.

8. Rele Proteksi dan Papan Alarm (Announciator)
Rele proteksi yaitu alat yang bekerja secara otomatis untuk mengamankan suatu peralatan listrik saat terjadi gangguan, menghindari atau mengurangi terjadinya kerusakan peralatan akibat gangguan dan membatasi daerah yang terganggu sekecil mungkin. Kesemua manfaat tersebut akan memberikan pelayanan penyaluran tenaga listrik dengan mutu dan keandalan yang tinggi. Sedangkan papan alarm atau announciator adalah sederetan nama-nama jenis gangguan yang dilengkapi dengan lampu dan suara sirine pada saat terjadi gangguan, sehingga memudahkan petugas untuk mengetahui rele proteksi yang bekerja dan jenis gangguan yang terjadi.
READ MORE - Perlengkapan Gardu Induk

Ilmu Bahan Listrik - Bahan Penyekat

Sifat-Sifat Bahan Penyekat

Bahan penyekat digunakan untuk memisahkan bagian-bagian yang bertegangan. Untuk itu pemakaian bahan penyekat perlu mempertimbangkan sifat kelistrikanya. Di samping itu juga perlu mempertimbangkan sifat termal, sifat mekanis, dan sifat kimia.
Sifat kelistrikan mencakup resistivitas, permitivitas, dan kerugian dielektrik. Penyekat membutuhkan bahan yang mempunyai resistivitas yang besar agar arus yang bocor sekecil mungkin (dapat diabaikan). Yang perlu diperhatikan di sini adalah bahwa bahan isolasi yang higroskopis hendaknya dipertimbangkan penggunaannya pada tempat-tempat yang lembab karena resistivitasnya akan turun. Resistivitas juga akan turun jika tegangan yang diberikan naik.

Besarnya kapasitansi bahan isolasi yang berfungsi sebagai dielektrik ditentukan oleh permitivitasnya, di samping jarak dan luas permukaannya. Besarnya permitivitas udara adalah 1,00059, sedangakan untuk zat padat dan zat cair selalu lebih besar dari itu. Apabila bahan isolasi diberi tegangan bolak-balik maka akan terdapat energi yang diserap oleh bahan tersebut. Besarnya kerugian energi yang diserap bahan isolasi tersebut berbanding lurus dengan tegangan, frekuensi, kapasitansi, dan sudut kerugian dielektrik. Sudut tersebut terletak antara arus kapasitif dan arus total (Ic + Ir).

Suhu juga berpengaruh terhadap kekuatan mekanis, kekerasan, viskositas, ketahanan terhadap pengaruh kimia dan sebagainya. Bahan isolasi dapat rusak diakibatkan oleh panas pada kurun waktu tertentu. Waktu tersebut disebut umur panas bahan isolasi. Sedangakan kemampuan bahan menahan suhu tertentu tanpa terjadi kerusakan disebut ketahanan panas. Menurut IEC (International Electrotechnical Commission) didasarkan atas batas suhu kerja bahan, bahan isolasi yang digunakan pada suhu di bawah nol (missal pada pesawat terbang, pegunungan) perlu juga diperhitungkan karena pada suhu di bawah nol bahan isolasi akan menjadi keras dan regas. Pada mesin-mesin listrik, kenaikan suhu pada penghantar dipengaruhi oleh resistansi panas bahan isolasi. Bahan isolasi tersebut hendaknya mampu meneruskan panas yang didesipasikan oleh penghantar atau rangkaian magnetik ke udara sekelilingnya.

Kemampuan larut bahan isolasi, resistansi kimia, higroskopis, permeabilitas uap, pengaruh tropis, dan resistansi radio aktif perlu dipertimbangkan pada penggunaan tertentu. Kemampuan larut diperlukan dalam menentukan macam bahan pelarut untuk suatu bahan dan dalam menguji kemampuan bahan isolasi terhadap cairan tertentu selama diimpregnasi atau dalam pemakaian. Kemampuan larut bahan padat dapat dihitung berdasarkan banyaknya bagian permukaan bahan yang dapat larut setiap satuan waktu jika diberi bahan pelarut. Umumnya kemampuan larut bahan akan bertambah jika suhu dinaikkan.

Ketahanan terhadap korosi akibat gas, air, asam, basa, dan garam bahan isolasi juga nervariasi antara satu pemakaian bahan isolasi di daerah yang konsentrasi kimianya aktif, instalasi tegangan tinggi, dan suhu di atas normal. Uap air dapat memperkecil daya isolasi bahan. Karena bahan isolasi juga mempunyai sifat higroskopis maka selama penyimpanan atau pemakaian diusahakan agar tidak terjadi penyerapan uap air oleh bahan isolasi, dengan memberikan bahan penyerap uap air, yaitu senyawa P2O5 atau CaC12. Bahan yang molekulnya berisi kelompok hidroksil (OH) higrokopisitasnya relative besar dibanding bahan parafin dan polietilin yang tidak dapat menyerap uap air. Bahan isolasi hendaknya juga mempunyai permeabilitas uap (kemampuan untuk dilewati uap) yang besar, khususnya bagi bahan yang digunakan untuk isolasi kabel dan rumah kapasitor. Di daerah tropis basah dimungkinkan tumbuhnya jamur dan serangga. Suhu yang tinggi disertai kelembaban dalam waktu lama dapat menyebabkan turunnya kemampuan isolasi. Oleh karena bahan isolasi hendaknya dipisi bahan anti jamur (paranitro phenol, dan pentha chloro phenol).

Pemakaian bahan isolasi sering dipengaruhi bermacam-macam energi radiasi yang dapat berpengaruh dan mengubah sifat bahan isolasi. Radiasi sinar matahari mempengaruhi umur bahan, khususnya jika bersinggungan dengan oksigen. Sinar ultra violet dapat merusak beberapa bahan organic. T yaitu kekuatan mekanik elastisitas. Sinar X sinar-sinar dari reactor nuklir, partikel-partikel radio isotop juga mempengaruhi kemampuan bahan isolasi. Sifat mekanis bahan yang meliputi kekuatan tarik, modulus elastisitas, dan derajat kekerasan bahan isolasi juga menjadi pertimbangan dalam memilih suatu jenis bahan isolasi.

Pembagian Kelas Bahan Penyekat

Bahan penyekat listrik dapat dibagi atas beberapa kelas berdasarkan suhu kerja maksimum, yaitu sebagai berikut:

1. Kelas Y, suhu kerja maksimum 90°C
Yang termasuk dalam kelas ini adalah bahan berserat organis (seperti Katun, sutera alam, wol sintetis, rayon serat poliamid, kertas, prespan, kayu, poliakrilat, polietilen, polivinil, karet, dan sebagainya) yang tidak dicelup dalam bahan pernis atau bahan pencelup lainnya. Termasuk juga bahan termoplastik yang dapat lunak pada suhu rendah.

2. Kelas A, suhu kerja maksimum 150°C
Yaitu bahan berserat dari kelas Y yang telah dicelup dalam pernis aspal atau kompon, minyak trafo, email yang dicampur dengan vernis dan poliamil atau yang terendam dalam cairan dielektrikum (seperti penyekat fiber pada transformator yang terendam minyak). Bahan -bahan ini adalah katun, sutera, dan kertas yang telah dicelup, termasuk kawat email (enamel) yang terlapis damar-oleo dan damar-polyamide.

3. Kelas E, suhu kerja maksimum 120°C
Yaitu bahan penyekat kawat enamel yang memakai bahan pengikat polyvinylformal, polyurethene dan damar epoxy dan bahan pengikat lain sejenis dengan bahan selulosa, pertinaks dan tekstolit, film triacetate, film dan serat polyethylene terephthalate.

4. Kelas B, suhu kerja maksimum 130°C
Yaitu Yaitu bahan non-organik (seperti : mika, gelas, fiber, asbes) yang dicelup atau direkat menjadi satu dengan pernis atau kompon, dan biasanya tahan panas (dengan dasar minyak pengering, bitumin sirlak, bakelit, dan sebagainya).

5. Kelas F, suhu kerja maksimum 155°C
Bahan bukan organik dicelup atau direkat menjadi satu dengan epoksi, poliurethan, atau vernis yang tahan panas tinggi.

6. Kelas H, suhu kerja maksimum 180°C
Semua bahan komposisi dengan bahan dasar mika, asbes dan gelas fiber yang dicelup dalam silikon tanpa campuran bahan berserat (kertas, katun, dan sebagainya). Dalam kelas ini termasuk juga karet silikon dan email kawat poliamid murni.

7. Kelas C, suhu kerja diatas 180°C
Bahan anorganik yang tidak dicelup dan tidak terikat dengan substansi organic, misalnya mika, mikanit yang tahan panas (menggunakan bahan pengikat anorganik), mikaleks, gelas, dan bahan keramik. Hanya satu bahan organik saja yang termasuk kelas C yaitu politetra fluoroetilen (Teflon).

Macam-macam bahan penyekat
• Bahan penyekat bentuk padat, bahan listrik ini dapat dikelompokkan menjadi beberapa macam, diantaranya yaitu: bahan tambang, bahan berserat, gelas, keramik, plastik, karet, ebonit dan bakelit, dan bahan-bahan lain yang dipadatkan.
• Bahan penyekat bentuk cair, jenis penyekat ini yang banyak digunakan pada teknik listrik adalah air, minyak transformator, dan minyak kabel.
• Bahan penyekat bentuk gas, yang sering digunakan untuk keperluan teknik listrik diantaranya : udara, nitrogen, hidrogen, dan karbondioksida.
READ MORE - Ilmu Bahan Listrik - Bahan Penyekat
Category: 1 komentar

Sistem Distribusi Tenaga Listrik

Sistem Distribusi merupakan bagian dari sistem tenaga listrik. Sistem distribusi ini berguna untuk menyalurkan tenaga listrik dari sumber daya listrik besar (Bulk Power Source) sampai ke konsumen,
Jadi fungsi distribusi tenaga listrik adalah:
1) pembagian atau penyaluran tenaga listrik ke beberapa tempat (pelanggan
2) merupakan sub sistem tenaga listrik yang langsung berhubungan dengan pelanggan, karena catu daya pada pusat-pusat beban (pelanggan) dilayani langsung melalui jaringan distribusi.

Tenaga listrik yang dihasilkan oleh pembangkit listrik besar dengan tegangan dari 11 kV sampai 24 kV dinaikan tegangannya oleh gardu induk dengan transformator penaik tegangan menjadi 70 kV ,154kV, 220kV atau 500kV kemudian disalurkan melalui saluran transmisi. Tujuan menaikkan tegangan ialah untuk memperkecil kerugian daya listrik pada saluran transmisi, dimana dalam hal ini kerugian daya adalah sebanding dengan kuadrat arus yang mengalir (I kwadrat R). Dengan daya yang sama bila nilai tegangannya diperbesar, maka arus yang mengalir semakin kecil sehingga kerugian daya juga akan kecil pula.

Dari saluran transmisi, tegangan diturunkan lagi menjadi 20 kV dengan transformator penurun tegangan pada gardu induk distribusi, kemudian dengan sistem tegangan tersebut penyaluran tenaga listrik dilakukan oleh saluran distribusi primer. Dari saluran distribusi primer inilah gardu-gardu distribusi mengambil tegangan untuk diturunkan tegangannya dengan trafo distribusi menjadi sistem tegangan rendah, yaitu 220/380 Volt. Selanjutnya disalurkan oleh saluran distribusi sekunder ke konsumen-konsumen. Dengan ini jelas bahwa sistem distribusi merupakan bagian yang penting dalam sistem tenaga listrik secara keseluruhan.

Pada sistem penyaluran daya jarak jauh, selalu digunakan tegangan setinggi mungkin, dengan menggunakan trafo-trafo step-up. Nilai tegangan yang sangat tinggi ini (HV,UHV,EHV) menimbulkan beberapa konsekuensi antara lain: berbahaya bagi lingkungan dan mahalnya harga perlengkapan-perlengkapannya, selain menjadi tidak cocok dengan nilai tegangan yang dibutuhkan pada sisi beban. Maka, pada daerah-daerah pusat beban tegangan saluran yang tinggi ini diturunkan kembali dengan menggunakan trafo-trafo step-down. Akibatnya, bila ditinjau nilai tegangannya, maka mulai dari titik sumber hingga di titik beban, terdapat bagian-bagian saluran yang memiliki nilai tegangan berbeda-beda.

Pengelompokan Jaringan Distribusi Tenaga Listrik

Gambar 1. Konfigurasi Sistem Tenaga Listrik.

Untuk kemudahan dan penyederhanaan, lalu diadakan pembagian serta pembatasan-pembatasan seperti pada Gambar diatas:
Daerah I : Bagian pembangkitan (Generation)
Daerah II : Bagian penyaluran (Transmission) , bertegangan tinggi (HV,UHV,EHV)
Daerah III : Bagian Distribusi Primer, bertegangan menengah (6 atau 20kV).
Daerah IV : (Di dalam bangunan pada beban/konsumen), Instalasi, bertegangan rendah.

Berdasarkan pembatasan-pembatasan tersebut, maka diketahui bahwa porsi materi Sistem Distribusi adalah Daerah III dan IV, yang pada dasarnya dapat dikelasifikasikan menurut beberapa cara, bergantung dari segi apa klasifikasi itu dibuat. Dengan demikian ruang lingkup Jaringan Distribusi adalah:
a. SUTM, terdiri dari : Tiang dan peralatan kelengkapannya, konduktor dan peralatan perlengkapannya, serta peralatan pengaman dan pemutus.
b. SKTM, terdiri dari : Kabel tanah, indoor dan outdoor termination dan lain-lain.
c. Gardu trafo, terdiri dari : Transformator, tiang, pondasi tiang, rangka tempat trafo, LV panel, pipa-pipa pelindung, Arrester, kabel-kabel, transformer band, peralatan grounding,dan lain-lain.
d. SUTR dan SKTR, terdiri dari: sama dengan perlengkapan/material pada SUTM dan SKTM. Yang membedakan hanya dimensinya.

Klasifikasi Saluran Distribusi Tenaga Listrik

Secara umum, saluran tenaga Listrik atau saluran distribusi dapat diklasifikasikan sebagai berikut:

1. Menurut nilai tegangannya:
a. Saluran distribusi Primer, Terletak pada sisi primer trafo distribusi, yaitu antara titik Sekunder trafo substation (Gardu Induk) dengan titik primer trafo distribusi. Saluran ini bertegangan menengah 20 kV. Jaringan listrik 70 kV atau 150 kV, jika langsung melayani pelanggan, bisa disebut jaringan distribusi.
b. Saluran Distribusi Sekunder, Terletak pada sisi sekunder trafo distribusi, yaitu antara titik sekunder dengan titik cabang menuju beban (Lihat Gambar 2-2)

2. Menurut bentuk tegangannya:
a. Saluran Distribusi DC (Direct Current) menggunakan sistem tegangan searah.
b. Saluran Distribusi AC (Alternating Current) menggunakan sistem tegangan bolak-balik.

3. Menurut jenis/tipe konduktornya:
a. Saluran udara, dipasang pada udara terbuka dengan bantuan penyangga (tiang) dan perlengkapannya, dan dibedakan atas:
- Saluran kawat udara, bila konduktornya telanjang, tanpa isolasi pembungkus.
- Saluran kabel udara, bila konduktornya terbungkus isolasi.
b. Saluran Bawah Tanah, dipasang di dalam tanah, dengan menggunakan kabel tanah (ground cable).
c. Saluran Bawah Laut, dipasang di dasar laut dengan menggunakan kabel laut (submarine cable)

4. Menurut susunan (konfigurasi) salurannya:
a. Saluran Konfigurasi horizontal, bila saluran fasa terhadap fasa yang lain/terhadap netral, atau saluran positip terhadap negatip (pada sistem DC) membentuk garis horisontal.

b. Saluran Konfigurasi Vertikal, bila saluran-saluran tersebut membentuk garis vertikal .

c. Saluran konfigurasi Delta, bila kedudukan saluran satu sama lain membentuk suatu segitiga (delta).


5. Menurut Susunan Rangkaiannya
Dari uraian diatas telah disinggung bahwa sistem distribusi di bedakan menjadi dua yaitu sistem distribusi primer dan sistem distribusi sekunder.
a. Jaringan Sistem Distribusi Primer,
Sistem distribusi primer digunakan untuk menyalurkan tenaga listrik dari gardu induk distribusi ke pusat-pusat beban. Sistem ini dapat menggunakan saluran udara, kabel udara, maupun kabel tanah sesuai dengan tingkat keandalan yang diinginkan dan kondisi serta situasi lingkungan. Saluran distribusi ini direntangkan sepanjang daerah yang akan di suplai tenaga listrik sampai ke pusat beban.

Terdapat bermacam-macam bentuk rangkaian jaringan distribusi primer, yaitu:
- Jaringan Distribusi Radial, dengan model: Radial tipe pohon, Radial dengan tie dan switch pemisah, Radial dengan pusat beban dan Radial dengan pembagian phase area.
- Jaringan distribusi ring (loop), dengan model: Bentuk open loop dan bentuk Close loop.
- Jaringan distribusi Jaring-jaring (NET)
- Jaringan distribusi spindle
- Saluran Radial Interkoneksi

b. Jaringan Sistem Distribusi Sekunder,
Sistem distribusi sekunder digunakan untuk menyalurkan tenaga listrik dari gardu distribusi ke beban-beban yang ada di konsumen. Pada sistem distribusi sekunder bentuk saluran yang paling banyak digunakan ialah sistem radial. Sistem ini dapat menggunakan kabel yang berisolasi maupun konduktor tanpa isolasi. Sistem ini biasanya disebut sistem tegangan rendah yang langsung akan dihubungkan kepada konsumen/pemakai tenaga listrik dengan melalui peralatan-peralatan sbb:
- Papan pembagi pada trafo distribusi,
- Hantaran tegangan rendah (saluran distribusi sekunder).
- Saluran Layanan Pelanggan (SLP) (ke konsumen/pemakai)
- Alat Pembatas dan pengukur daya (kWh meter) serta fuse atau pengaman pada pelanggan.

gambar 2. Komponen Sistem Distribusi

Tegangan Sistem Distribusi Sekunder

Ada bermacam-macam sistem tegangan distribusi sekunder menurut standar; (1) EEI : Edison Electric Institut, (2) NEMA (National Electrical Manufactures Association). Pada dasarnya tidak berbeda dengan sistem distribusi DC, faktor utama yang perlu diperhatikan adalah besar tegangan yang diterima pada titik beban mendekati nilai nominal, sehingga peralatan/beban dapat dioperasikan secara optimal. Ditinjau dari cara pengawatannya, saluran distribusi AC dibedakan atas beberapa macam tipe dan cara pengawatan, ini bergantung pula pada jumlah fasanya, yaitu:
1. Sistem satu fasa dua kawat 120 Volt
2. Sistem satu fasa tiga kawat 120/240 Volt
3. Sistem tiga fasa empat kawat 120/208 Volt
4. Sistem tiga fasa empat kawat 120/240 Volt
5. Sistem tiga fasa tiga kawat 240 Volt
6. Sistem tiga fasa tiga kawat 480 Volt
7. Sistem tiga fasa empat kawat 240/416 Volt
8. Sistem tiga fasa empat kawat 265/460 Volt
9. Sistem tiga fasa empat kawat 220/380 Volt

Di Indonesia dalam hal ini PT. PLN menggunakan sistem tegangan 220/380 Volt. Sedang pemakai listrik yang tidak menggunakan tenaga listrik dari PT. PLN, menggunakan salah satu sistem diatas sesuai dengan standar yang ada. Pemakai listrik yang dimaksud umumnya mereka bergantung kepada negara pemberi pinjaman atau dalam rangka kerja sama, dimana semua peralatan listrik mulai dari pembangkit (generator set) hingga peralatan kerja (motor-motor listrik) di suplai dari negara pemberi pinjaman/kerja sama tersebut. Sebagai anggota, IEC (International Electrotechnical Comission), Indonesia telah mulai menyesuaikan sistem tegangan menjadi 220/380 Volt saja, karena IEC sejak tahun 1967 sudah tidak mencantumkan lagi tegangan 127 Volt. (IEC Standard Voltage pada Publikasi nomor 38 tahun 1967 halaman 7 seri 1 tabel 1).

Diagram rangkaian sisi sekunder trafo distribusi terdiri dari:
1. Sistem distribusi satu fasa dengan dua kawat, Tipe ini merupakan bentuk dasar yang paling sederhana, biasanya digunakan untuk melayani penyalur daya berkapasitas kecil dengan jarak pendek, yaitu daerah perumahan dan pedesaan.
2. Sistem distribusi satu fasa dengan tiga kawat, Pada tipe ini, prinsipnya sama dengan sistem distribusi DC dengan tiga kawat, yang dalam hal ini terdapat dua alternatif besar tegangan. Sebagai saluran “netral” disini dihubungkan pada tengah belitan (center-tap) sisi sekunder trafo, dan diketanahkan, untuk tujuan pengamanan personil. Tipe ini untuk melayani penyalur daya berkapasitas kecil dengan jarak pendek, yaitu daerah perumahan dan pedesaan.
3. Sistem distribusi tiga fasa empat kawat tegangan 120/240 Volt, Tipe ini untuk melayani penyalur daya berkapasitas sedang dengan jarak pendek, yaitu daerah perumahan pedesaan dan perdagangan ringan, dimana terdapat dengan beban 3 fasa.
4. Sistem distribusi tiga fasa empat kawat tegangan 120/208 Volt.
5. Sistem distribusi tiga fasa dengan tiga kawat, Tipe ini banyak dikembangkan secara ekstensif. Dalam hal ini rangkaian tiga fasa sisi sekunder trafo dapat diperoleh dalam bentuk rangkaian delta (segitiga) ataupun rangkaian wye (star/bintang). Diperoleh dua alternatif besar tegangan, yang dalam pelaksanaannya perlu diperhatikan adanya pembagian seimbang antara ketiga fasanya. Untuk rangkaian delta tegangannya bervariasi yaitu 240 Volt, dan 480 Volt. Tipe ini dipakai untuk melayani beban-beban industri atau perdagangan.
6. Sistem distribusi tiga fasa dengan empat kawat, Pada tipe ini, sisi sekunder (output) trafo distribusi terhubung star,dimana saluran netral diambil dari titik bintangnya. Seperti halnya padasistem tiga fasa yang lain, di sini perlu diperhatikan keseimbangan beban antara ketiga fasanya, dan disini terdapat dua alternatif besar tegangan.
READ MORE - Sistem Distribusi Tenaga Listrik

Sistem Pentanahan


Dalam sebuah instalasi listrik ada empat bagian yang harus ditanahkan atau sering juga disebut dibumikan. Empat bagian dari instalasi listrik ini adalah:

a.Semua bagian instalasi yang terbuat dari logam (menghantar listrik) dan dengan mudah bisa disentuh manusia. Hal ini perlu agar potensial dari logam yang mudah disentuh manusia selalu sama dengan potensial tanah (bumi) tempat manusia berpijak sehingga tidak berbahaya bagi manusia yang menyentuhnya.
b. Bagian pembuangan muatan listrik (bagian bawah) dari lightning arrester. Hal ini diperlukan agar lightning arrester dapat berfungsi dengan baik, yaitu membuang muatan listrik yang diterimanya dari petir ke tanah (bumi) dengan lancar.
c. Kawat petir yang ada pada bagian atas saluran transmisi. Kawat petir ini sesungguhnya juga berfungsi sebagai lightning arrester. Karena letaknya yang ada di sepanjang saluran transmisi, maka semua kaki tiang transmisi harus ditanahkan agar petir yang menyambar kawat petir dapat disalurkan ke tanah dengan lancar melalui kaki tiang saluran transmisi.
d. Titik netral dari transformator atau titik netral dari generator. Hal ini diperlukan dalam kaitan dengan keperluan proteksi khususnya yang menyangkut gangguan hubung tanah.

Dalam praktik, diinginkan agar tahanan pentanahan dari titik-titik pentanahan tersebut di atas tidak melebihi 4 ohm.

Secara teoretis, tahanan dari tanah atau bumi adalah nol karena luas penampang bumi tak terhingga. Tetapi kenyataannya tidak demikian, artinya tahanan pentanahan nilainya tidak nol. Hal ini terutama disebabkan oleh adanya tahanan kontak antara alat pentanahan dengan tanah di mana alat tersebut dipasang (dalam tanah). Alat untuk
melakukan pentanahan ditunjukkan oleh Gambar 1.


Gambar 1. Macam-macam alat pentanahan.

Dari gambar 1 tampak bahwa ada empat alat pentanahan, yaitu:
1. Batang pentanahan tunggal (single grounding rod). 
2. Batang pentanahan ganda (multiple grounding rod). Terdiri dari beberapa batang tunggal yang dihubungkan paralel. 
3. Anyaman pentanahan (grounding mesh), merupakan anyaman kawat tembaga.
4. Pelat pentanahan (grounding plate), yaitu pelat tembaga.

Tahanan pentanahan selain ditimbulkan oleh tahanan kontak tersebut diatas juga ditimbulkan oleh tahanan sambungan antara alat pentanahan dengan kawat penghubungnya. Unsur lain yang menjadi bagian dari tahanan pentanahan adalah tahanan dari tanah yang ada di sekitar alat pentanahan yang menghambat aliran muatan listrik (arus listrik) yang keluar dari alat pentanahan tersebut. Arus listrik yang keluar dari alat pentanahan ini menghadapi bagian-bagian tanah yang berbeda tahanan jenisnya. Untuk jenis tanah yang sama, tahanan jenisnya dipengaruhi oleh kedalamannya. Makin dalam letaknya, umumnya makin kecil tahanan jenisnya, karena komposisinya makin padat dan umumnya juga lebih basah. Oleh karena itu, dalam memasang batang pentanahan, makin dalam pemasangannya akan makin baik hasilnya dalam arti akan didapat tahanan pentanahan yang makin rendah.


Gambar 2. Batang pentanahan beserta aksesorisnya.

Gambar 2 menggambarkan batang pentanahan beserta aksesorisnya, yaitu; (1) Konduktor tanah, (2) Penghubung antara konduktor dengan elektroda tanah, dan (3) Elektroda tanah. 


Gambar 3. Batang pentanahan dan lingkaran pengaruhnya (sphere of influence).

Sedangkan gambar 3 menggambarkan batang pentanahan beserta lingkaran pengaruhnya (sphere of influence) didalam tanah. Tampak bahwa makin dalam letaknya di dalam tanah sampai kedalaman yang sama dengan kedalaman batang pentanahan, dan lingkaran pengaruh ini makin dekat dengan batang pentanahan. Hal ini disebabkan oleh adanya variasi tahanan jenis tanahnya, seperti ditunjukan oleh tabel tahanan jenis tanah dibawah ini. 


Tabel 1. Tahanan jenis berbagai macam tanah dan tahanan pentanahannya.

Tabel 1 menunjukkan tahanan jenis berbagai macam tanah serta tahanan pentanahan dengan berbagai kedalaman dan apabila digunakan pita pentanahan (grounding strip) dengan berbagai ukuran panjang. Dari tabel terlihat bahwa untuk memperoleh tahanan pentanahan 6 Ω di humus lembab, maka batang pentanahannya cukup dipancang sedalam 5 meter tetapi bila di pasir kering kedalamannya harus 165 meter.
READ MORE - Sistem Pentanahan
Category: 0 komentar

Faktor-Faktor Dalam Pembangkitan

1. Faktor Beban

Faktor beban adalah perbandingan antara besarnya beban rata-rata untuk selang waktu tertentu terhadap beban puncak tertinggi dalam selang waktu yang sama (misalnya satu hari atau satu bulan). Sedangkan beban rata-rata untuk suatu selang waktu tertentu adalah jumlah produksi kWh dalam selang waktu tersebut dibagi dengan jumlah jam dari selang waktu tersebut.

Dari uraian diatas didapat:

faktor beban = beban rata-rata/beban puncak
bagi penyedia listrik, faktor beban sistem diinginkan setinggi mungkin karena faktor beban yang makin tinggi berarti makin rata beban sistemnya, sehingga tingkay pemanfaatan alat-alat yang ada dalam sistem tersebut dapat diusahakan setinggi mungkin.

Dalam praktiknya, faktor beban tahunan sistem berkisar antara 60%-80%.

2. Faktor Kapasitas

Faktor kapasitas sebuah unit pembangkit menggambarkan seberapa besar sebuah unit pembangkit itu dimanfaatkan. Faktor kapasitas tahunan (8760 jam) didefinisikan sebagai:

faktor kapasitas = Produksi kWh setahun/(daya terpasang MW x 8760 jam)
Dalam praktiknya, faktor kapasitas tahunan untuk unit PLTU hanya dapat mencapai angka antara 60% - 80% karena adanya masa pemeliharaan dan jika adanya gangguan atau kerusakan yang dialami oleh unit pembangkit tersebut. Untuk PLTA, faktor kapasitas tahunannya berkisar antara 30% - 50%, hal ini berkaitan dengan ketersediaan air.

3. Faktor Penggunaan (Utilitas)

faktor ini sesungguhnya serupa dengan faktor kapasitas, tetapi disini menyangkut daya. Faktor Utilitas sebuah alat dapat didefinisikan sebagai berikut:

Faktor Utilitas = Beban alat yang tertinggi/kemampuan alat

beban dinyatakan dalam ampere atau megawatt (MW)tergantung alat yang diukur faktor utilitasnya. Untuk saluran, umumnya dalam ampere, tetapi untuk unit pembangkit dalam MW. Faktor utilitas ini perlu diamati darikeperluan pemanfaatan alat dan juga untuk mencegah pembebanan yang berlebihan pada suatu alat.

4. Forced Outage Rate (FOR)

FOR adalah sebuah faktor yang menggambarkan sering-tidaknya suatu unit pembangkit mengalami gangguan, biasanya diukur untuk masa satu tahun dan didefinisikan sebagai:

FOR = jumlah jam gangguan unit pembangkit/(jumlah jam operasi+Jumlah jam gangguan Unit pembangkit)

FOR tahunan untuk PLTA berkisar 0,01 dan FOR tahunan untuk pembangkit thermis berkisar 0,1 - 0,5.

makin andal suatu unit pembangkit, maka makin kecil nilai FOR-nya dan berarti makin jarang terjadi gangguan pada unit pembangkit tersebut. Begitu pula sebaliknya, jika nilai FOR tinggi, berarti unit pembangkit tersebut sering terjadi gangguan dan tidak andal.

Besarnya nilai FOR atau turunnya keandalan suatu unit pembangkit umumnya disebabkan oleh kurang baiknya pemeliharaan peralatan pada unit pembangkit tersebut.
READ MORE - Faktor-Faktor Dalam Pembangkitan
Category: 0 komentar

Saluran Transmisi

Kategori saluran transmisi berdasarkan pemasangan

Berdasarkan pemasangannya, saluran transmisi dibagi menjadi dua kategori, yaitu:
1. saluran udara (overhead lines); saluran transmisi yang menyalurkan energi listrik melalui kawat-kawat yang digantung pada isolator antar menara atau tiang transmisi. Keuntungan dari saluran transmisi udara adalah lebih murah, mudah dalam perawatan, mudah dalam mengetahui letak gangguan, mudah dalam perbaikan, dan lainnya. Namun juga memiliki kerugian, antara lain: karena berada di ruang terbuka, maka cuaca sangat berpengaruh terhadap keandalannya, dengan kata lain mudah terjadi gangguan, seperti gangguan hubung singkat, gangguan tegangan lebih karena tersambar petir, dan gangguan-gangguan lainnya. Dari segi estetika/keindahan juga kurang, sehingga saluran transmisi bukan pilihan yang ideal untuk suatu saluran transmisi didalam kota.
READ MORE - Saluran Transmisi

Kode IP (International Protection / Ingress Protection)

Kode IP (International Protection), ada juga yang mengartikan sebagai “Ingress Protection” terdiri dari huruf IP yang kemudian diikuti oleh dua angka dan terkadang diikuti juga oleh sebuah atau dua huruf tambahan. Sebagaimana didefinisikan dalam standar internasional IEC 60529, dimana IP rating tersebut mengklasifikasikan derajat atau tingkat perlindungan yang diberikan dari suatu peralatan listrik, contohnya motor listrik seperti telah dijelaskan pada artikel sebelumnya disini.


Perlindungan tersebut merupakan perlindungan terhadap gangguan:
• Benda padat (termasuk bagian tubuh manusia seperti tangan dan jari).
• Debu.
• Hubungan/kontak langsung.
• Air.

Dua digit angka setelah huruf IP menunjukkan kondisi yang sesuai dari peralatan tersebut berdasarkan klasifikasinya. Dan jika tidak ada rating perlindungan sehubungan dengan salah satu kriteria, maka angka diganti dengan huruf X, contoh IP4X atau IPX6.

Kode Tingkat Perlindungan



READ MORE - Kode IP (International Protection / Ingress Protection)
Category: 0 komentar

Menara Listrik

Pada suatu “Sistem Tenaga Listrik”, energi listrik yang dibangkitkan dari pusat pembangkit listrik ditransmisikan ke pusat-pusat pengatur beban melalui suatu saluran transmisi, saluran transmisi tersebut dapat berupa saluran udara atau saluran bawah tanah, namun pada umumnya berupa saluran udara. Energi listrik yang disalurkan lewat saluran transmisi udara pada umumnya menggunakan kawat telanjang sehingga mengandalkan udara sebagai media isolasi antara kawat penghantar tersebut dengan benda sekelilingnya, dan untuk menyanggah / merentang kawat penghantar dengan ketinggian dan jarak yang aman bagi manusia dan lingkungan sekitarnya, kawat-kawat penghantar tersebut dipasang pada suatu konstruksi bangunan yang kokoh, yang biasa disebut menara / tower. Antara menara / tower listrik dan kawat penghantar disekat oleh isolator.

Konstruksi tower besi baja merupakan jenis konstruksi saluran transmisi tegangan tinggi (SUTT) ataupun saluran transmisi tegangan ekstra tinggi (SUTET) yang paling banyak digunakan di jaringan PLN, karena mudah dirakit terutama untuk pemasangan di daerah pegunungan dan jauh dari jalan raya, harganya yang relatif lebih murah dibandingkan dengan penggunaan saluran bawah tanah serta pemeliharaannya yang mudah. Namun demikian perlu pengawasan yang intensif, karena besi-besinya rawan terhadap pencurian. Seperti yang telah terjadi dibeberapa daerah di Indonesia, dimana pencurian besi-besi baja pada menara / tower listrik mengakibatkan menara / tower listrik tersebut roboh, dan penyaluran energi listrik ke konsumen pun menjadi terganggu.

Suatu menara atau tower listrik harus kuat terhadap beban yang bekerja padanya, antara lain yaitu:

- Gaya berat tower dan kawat penghantar (gaya tekan).
- Gaya tarik akibat rentangan kawat.
- Gaya angin akibat terpaan angin pada kawat maupun badan tower.

Jenis-Jenis Menara / Tower Listrik

Menurut bentuk konstruksinya, jenis-jenis menara / tower listrik dibagi atas 4 macam, yaitu:

1. Lattice tower
2. Tubular steel pole
3. Concrete pole
4. Wooden pole


Gambar 1. Lattice tower


Gambar 2. Tubular steel pole

Menurut fungsinya, menara / tower listrik dibagi atas 7 macam yaitu:

1. Dead end tower, yaitu tiang akhir yang berlokasi di dekat Gardu induk, tower ini hampir sepenuhnya menanggung gaya tarik.

2. Section tower, yaitu tiang penyekat antara sejumlah tower penyangga dengan sejumlah tower penyangga lainnya karena alasan kemudahan saat pembangunan (penarikan kawat), umumnya mempunyai sudut belokan yang kecil.

3. Suspension tower, yaitu tower penyangga, tower ini hampir sepenuhnya menanggung gaya berat, umumnya tidak mempunyai sudut belokan.

4. Tension tower, yaitu tower penegang, tower ini menanggung gaya tarik yang lebih besar daripada gaya berat, umumnya mempunyai sudut belokan.

5. Transposision tower, yaitu tower tension yang digunakan sebagai tempat melakukan perubahan posisi kawat fasa guna memperbaiki impendansi transmisi.

6. Gantry tower, yaitu tower berbentuk portal digunakan pada persilangan antara dua Saluran transmisi. Tiang ini dibangun di bawah Saluran transmisi existing.

7. Combined tower, yaitu tower yang digunakan oleh dua buah saluran transmisi yang berbeda tegangan operasinya.


Gambar 3. Tower 2 sirkit tipe suspensi (kiri) dan tension (kanan).

sus""id="BLOGGER_PHOTO_ID_5288621732545591922"
Gambar 4. Tower 4 sirkit tipe suspensi (kiri) dan tension (kanan).

Menurut susunan / konfigurasi kawat fasa, menara / tower listrik dikelompokkan atas:

1. Jenis delta, digunakan pada konfigurasi horizontal / mendatar.
2. Jenis piramida, digunakan pada konfigurasi vertikal / tegak.
3. Jenis Zig-zag, yaitu kawat fasa tidak berada pada satu sisi lengan tower.

Dilihat dari tipe tower, dibagi atas beberapa tipe seperti ditunjukkan pada tabel 1 dan tabel 2.


Tabel 1. Tipe tower 150 kV


Tabel 2. Tipe Tower 500 kV

Komponen-komponen Menara / Tower listrik

Secara umum suatu menara / tower listrik terdiri dari:
Pondasi, yaitu suatu konstruksi beton bertulang untuk mengikat kaki tower (stub) dengan bumi.

Stub, bagian paling bawah dari kaki tower, dipasang bersamaan dengan pemasangan pondasi dan diikat menyatu dengan pondasi.

Leg, kaki tower yang terhubung antara stub dengan body tower. Pada tanah yang tidak rata perlu dilakukan penambahan atau pengurangan tinggi leg, sedangkan body harus tetap sama tinggi permukaannya.

Common Body, badan tower bagian bawah yang terhubung antara leg dengan badan tower bagian atas (super structure). Kebutuhan tinggi tower dapat dilakukan dengan pengaturan tinggi common body dengan cara penambahan atau pengurangan.

Super structure, badan tower bagian atas yang terhubung dengan common body dan cross arm kawat fasa maupun kawat petir. Pada tower jenis delta tidak dikenal istilah super structure namun digantikan dengan “K” frame dan bridge.

Cross arm, bagian tower yang berfungsi untuk tempat menggantungkan atau mengaitkan isolator kawat fasa serta clamp kawat petir. Pada umumnya cross arm berbentuk segitiga kecuali tower jenis tension yang mempunyai sudut belokan besar berbentuk segi empat.

“K” frame, bagian tower yang terhubung antara common body dengan bridge maupun cross arm. “K” frame terdiri atas sisi kiri dan kanan yang simetri. “K” frame tidak dikenal di tower jenis pyramid.

Bridge, penghubung antara cross arm kiri dan cross arm tengah. Pada tengah-tengah bridge terdapat kawat penghantar fasa tengah. Bridge tidak dikenal di tower jenis pyramida.

Rambu tanda bahaya, berfungsi untuk memberi peringatan bahwa instalasi SUTT/SUTET mempunyai resiko bahaya. Rambu ini bergambar petir dan tulisan “AWAS BERBAHAYA TEGANGAN TINGGI”. Rambu ini dipasang di kaki tower lebih kurang 5 meter diatas tanah sebanyak dua buah, dipasang disisi yang mengahadap tower nomor kecil dan sisi yang menghadap nomor besar.

Rambu identifikasi tower dan penghantar / jalur, berfungsi untuk memberitahukan identitas tower seperti: Nomor tower, Urutan fasa, Penghantar / Jalur dan Nilai tahanan pentanahan kaki tower.

Anti Climbing Device (ACD), berfungsi untuk menghalangi orang yang tidak berkepentingan untuk naik ke tower. ACD dibuat runcing, berjarak 10 cm dengan yang lainnya dan dipasang di setiap kaki tower dibawah Rambu tanda bahaya.

Step bolt, baut panjang yang dipasang dari atas ACD ke sepanjang badan tower hingga super structure dan arm kawat petir. Berfungsi untuk pijakan petugas sewaktu naik maupun turun dari tower.

Halaman tower, daerah tapak tower yang luasnya diukur dari proyeksi keatas tanah galian pondasi. Biasanya antara 3 hingga 8 meter di luar stub tergantung pada jenis tower .

Demikian sedikit uraian mengenai menara / tower pada saluran transmisi udara, semoga bermanfaat.

Artikel Terkait

READ MORE - Menara Listrik

Komponen-Komponen Transformator / Transformer / Trafo

Komponen-Komponen Transformator / Transformer / Trafo
1. Inti Besi
Inti besi berfungsi untuk mempermudah jalan fluksi,magnetik yang ditimbulkan oleh arus listrik yang melalui kumparan. Dibuat dari lempengan-lempengan besi tipis yang berisolasi, untuk mengurangi panas (sebagai rugi-rugi besi) yang ditimbulkan oleh Eddy Current.

2. Kumparan Transformator
Kumparan transformator adalah beberapa lilitan kawat berisolasi yang membentuk suatu kumparan atau gulungan. Kumparan tersebut terdiri dari kumparan primer dan kumparan sekunder yang diisolasi baik terhadap inti besi maupun terhadap antar kumparan dengan isolasi padat seperti karton, pertinak dan lain-lain. Kumparan tersebut sebagai alat transformasi tegangan dan arus.

3. Minyak Transformator
Minyak transformator merupakan salah satu bahan isolasi cair yang dipergunakan sebagai isolasi dan pendingin pada transformator.
• Sebagai bagian dari bahan isolasi, minyak harus memiliki kemampuan untuk menahan tegangan tembus, sedangkan
• sebagai pendingin minyak transformator harus mampu meredam panas yang ditimbulkan,
sehingga dengan kedua kemampuan ini maka minyak diharapkan akan mampu melindungi transformator dari gangguan.

Minyak transformator mempunyai unsur atau senyawa hidrokarbon yang terkandung adalah senyawa hidrokarbon parafinik, senyawa hidrokarbon naftenik dan senyawa hidrokarbon aromatik. Selain ketiga senyawa tersebut, minyak transformator masih mengandung senyawa yang disebut zat aditif meskipun kandungannya sangat kecil .

4. Bushing
Hubungan antara kumparan transformator dengan jaringan luar melalui sebuah bushing yaitu sebuah konduktor yang diselubungi oleh isolator. Bushing sekaligus berfungsi sebagai penyekat/isolator antara konduktor tersebut dengan tangki transformator. Pada bushing dilengkapi fasilitas untuk pengujian kondisi bushing yang sering disebut center tap.

5. Tangki Konservator
Tangki Konservator berfungsi untuk menampung minyak cadangan dan uap/udara akibat pemanasan trafo karena arus beban. Diantara tangki dan trafo dipasangkan relai bucholzt yang akan meyerap gas produksi akibat kerusakan minyak . Untuk menjaga agar minyak tidak terkontaminasi dengan air, ujung masuk saluran udara melalui saluran pelepasan/venting dilengkapi media penyerap uap air pada udara, sering disebut dengan silica gel dan dia tidak keluar mencemari udara disekitarnya.

6. Peralatan Bantu Pendinginan Transformator
Pada inti besi dan kumparan – kumparan akan timbul panas akibat rugi-rugi tembaga. Maka panas tersebut mengakibatkan kenaikan suhu yang berlebihan, ini akan merusak isolasi, maka untuk mengurangi kenaikan suhu yang berlebihan tersebut transformator perlu dilengkapi dengan alat atau sistem pendingin untuk menyalurkan panas keluar transformator, media yang dipakai pada sistem pendingin dapat berupa: Udara/gas, Minyak dan Air.

Pada cara alamiah, pengaliran media sebagai akibat adanya perbedaan suhu media dan untuk mempercepat pendinginan dari media-media (minyak-udara/gas) dengan cara melengkapi transformator dengan sirip-sirip (radiator). Bila diinginkan penyaluran panas yang lebih cepat lagi, cara manual dapat dilengkapi dengan peralatan untuk mempercepat sirkulasi media pendingin dengan pompa pompa sirkulasi minyak, udara dan air, cara ini disebut pendingin paksa (Forced).

7. Tap Changer
Kualitas operasi tenaga listrik jika tegangan nominalnya sesuai ketentuan, tapi pada saat operasi dapat saja terjadi penurunan tegangan sehingga kualitasnya menurun, untuk itu perlu alat pengatur tegangan agar tegangan selau pada kondisi terbaik, konstan dan berkelanjutan.

Untuk itu trafo dirancang sedemikian rupa sehingga perubahan tegangan pada sisi masuk/input tidak mengakibatkan perubahan tegangan pada sisi keluar/output, dengan kata lain tegangan di sisi keluar/output-nya tetap. Alat ini disebut sebagai sadapan pengatur tegangan tanpa terjadi pemutusan beban, biasa disebut On Load Tap Changer (OLTC). Pada umumnya OLTC tersambung pada sisi primer dan jumlahnya tergantung pada perancangan dan perubahan sistem tegangan pada jaringan.

8. Alat pernapasan (Dehydrating Breather)
Sebagai tempat penampungan pemuaian minyak isolasi akibat panas yang timbul, maka minyak ditampung pada tangki yang sering disebut sebagai konservator. Pada konservator ini permukaan minyak diusahakan tidak boleh bersinggungan dengan udara, karena kelembaban udara yang mengandung uap air akan mengkontaminasi minyak walaupun proses pengkontaminasinya berlangsung cukup lama. Untuk mengatasi hal tersebut, udara yang masuk kedalam tangki konservator pada saat minyak menjadi dingin memerlukan suatu media penghisap kelembaban, yang digunakan biasanya adalah silica gel. Kebalikan jika trafo panas maka pada saat menyusut maka akan menghisap udara dari luar masuk kedalam tangki dan untuk menghindari terkontaminasi oleh kelembaban udara maka diperlukan suatu media penghisap kelembaban yang digunakan biasanya adalah silica gel, yang secara khusus dirancang untuk maksud tersebut diatas.

9. Indikator-indikator

a . Thermometer / Temperature Gauge, alat ini berfungsi untuk mengukur tingkat panas dari trafo, baik panasnya kumparan primer dan sekunder juga minyak trafonya. Thermometer ini bekerja atas dasar air raksa (mercuri/Hg) yang tersambung dengan tabung pemuaian dan tersambung dengan jarum indikator derajat panas.
Beberapa thermometer dikombinasikan dengan panas dari resistor (khusus yang tersambung dengan transformator arus, yang terpasang pada salah satu fasa fasa tengah) dengan demikian penunjukan yang diperoleh adalah relatif terhadap panas sebenarnya yang terjadi.

b. Permukaan minyak / Level Gauge, alat ini berfungsi untuk penunjukan tinggi permukaan minyak yang ada pada konservator. Ada beberapa jenis penunjukan, seperti penunjukan lansung yaitu dengan cara memasang gelas penduga pada salah satu sisi konservator sehingga akan mudah mengetahui level minyak. Sedangkan jenis lain jika konservator dirancang sedemikian rupa dengan melengkapi semacam balon dari bahan elastis dan diisi dengan udara biasa dan dilengkapi dengan alat pelindung seperti pada sistem pernapasan sehingga pemuaian dan penyusutan minyak-udara yang masuk kedalam balon dalam kondisi kering dan aman.

10. Peralatan Proteksi Internal
a . Relai Bucholzt, Penggunaan relai deteksi gas (Bucholtz) pada Transformator terendam minyak yaitu untuk mengamankan transformator yang didasarkan pada gangguan Transformator seperti : arcing, partial discharge dan over heating yang umumnya menghasilkan gas. Gas-gas tersebut dikumpulkan pada ruangan relai dan akan mengerjakan kontak-kontak alarm.

Relai deteksi gas juga terdiri dari suatu peralatan yang tanggap terhadap ketidaknormalan aliran minyak yang tinggi yang timbul pada waktu transformator terjadi gangguan serius. Peralatan ini akan menggerakkan kontak trip yang pada umumnya terhubung dengan rangkaian trip Pemutus Arus dari instalasi transformator tersebut.

Ada beberapa jenis relai bucholtz yang terpasang pada transformator, Relai sejenis tapi digunakan untuk mengamankan ruang On Load Tap Changer (OLTC) dengan prinsip kerja yang sama sering disebut dengan Relai Jansen. Terdapat beberapa jenis antara lain sama seperti relai buhcoltz tetapi tidak ada kontrol gas, jenis tekanan ada yang menggunakan membran/selaput timah yang lentur sehingga bila terjadi perubahan tekanan kerena gangguan akan bekerja, disini tidak ada alarm akan tetapi langsung trip dan dengan prinsip yang sama hanya menggunakan pengaman tekanan atau saklar tekanan.

b. Jansen membran, alat ini berfungsi untuk pengaman tekanan lebih (Explosive Membrane) / Bursting Plate. Relai ini bekerja karena tekanan lebih akibat gangguan didalam transformator, karena tekanan melebihi kemampuan membran/selaput yang terpasang, maka membran akan pecah dan minyak akan keluar dari dalam transformator yang disebabkan oleh tekanan minyak

c . Relai tekanan lebih (Sudden Pressure Relay), suatu flash over atau hubung singkat yang timbul pada suatu transformator terendam minyak, umumnya akan berkaitan dengan suatu tekanan lebih didalam tangki, karena gas yang dibentuk oleh dekomposisi dan evaporasi minyak. Dengan melengkapi sebuah relai pelepasan tekanan lebih pada trafo, maka tekanan lebih yang membahayakan tangki trafo dapat dibatasi besarnya. Apabila tekanan lebih ini tidak dapat dieliminasi dalam waktu beberapa millidetik, maka terjadi panas lebih pada cairan tangki dan trafo akan meledak. Peralatan pengaman harus cepat bekerja mengevakuasi tekanan tersebut.

d. Relai pengaman tangki, relai bekerja sebagai pengaman jika terjadi arus mengalir pada tangki, akibat gangguan fasa ke tangki atau dari instalasi bantu seperti motor kipas, sirkulasi dan motor-motor bantu yang lain, pemanas dll.
Arus ini sebagai pengganti relai diferensial sebab sistim relai pengaman tangki biasanya dipasang pada trafo yang tidak dilengkapi trafo arus disisi primer dan biasanya pada trafo dengan kapasitas kecil. Trafo dipasang diatas isolator sehingga tidak terhubung ke tanah kemudian dengan menggunakan kabel pentanahan yang dilewatkan melali trafo arus dengan tingkat isolasi dan ratio yang kecil kemudian tersambung pada relai
tangki tanah dengan ratio Trafo arus antara 300 s/d 500 dengan sisi sekunder hanya 1 Amp.

e. Neutral Grounding Resistance / NGR atau Resistance Pentanahan Trafo, adalah tahanan yang dipasang antara titik netral trafo dengan pentanahan, dimana berfungsi untuk memperkecil arus gangguan. Resistance dipasang pada titik neutral trafo yang dihubungkan Y ( bintang/wye ).

NGR biasanya dipasang pada titik netral trafo 70 kV atau 20 kV, sedangkan pada titik netral trafo 150 kV dan 500 kV digrounding langsung (solid)

Nilai NGR:
Tegangan 70 kV = 40 Ohm
Tegangan 20 kV = 12 Ohm,40 Ohm, 200 Ohm dan 500 Ohm

Jenis Neutral Grounding Resistance
- Resistance Liquid (Air), yaitu bahan resistance-nya adalah air murni. Untuk memperoleh nilai Resistance yang diinginkan ditambahkan garam KOH .

- Resistance Logam, yaitu bahannya terbuat dari logam nekelin dan dibuat dalam panel dengan nilai resistance yang sudah ditentukan.

11. Peralatan Tambahan untuk Pengaman Transformator

a. Pemadam kebakaran, (biasanya untuk transformator – transformator besar ), Sistem pemadam kebakaran yang modern pada transformator saat sekarang sudah sangat diperlukan. Fungsi yang penting untuk mencegah terbakarnya trafo atau memadamkan secepat mungkin trafo jika terjadi kebakaran.

Penyebab trafo terbakar adalah karena gangguan hubung singkat pada sisi sekunder sehingga pada trafo akan mengalir arus maksimumnya. Jika proses tersebut berlangsung cukup lama dan relai tidak beroperasi. Sementara itu, tidak beroperasinya relai juga sebagai akibat salah menyetel waktu pembukaan PMT, relai rusak, dan sumber DC yang tidak ada, serta kerusakan sistim pengawatan.

Sistem pemadam kebakaran yang modern yaitu dengan sistem mengurangi minyak secara otomatis sehingga terdapat ruang yang mana secara paksa gas pemisah oksigen diudara dimasukan kedalam ruang yang sudah tidak ada minyaknya sehingga tidak ada pembakaran minyak, dan kerusakan yang lebih parah dapat dihindarkan, walaupun kondisi trafo menjadi rusak.

Proses pembuangan minyak secara grafitasi atau dengan menggunakan motor pompa DC adalah suatu kondisi yang sangat berisiko, sebab hanya menggunakan katup otomatis yang dikendalikan oleh pemicu dari saklar akibat panasnya api dan menutupnya katup otomatis pada katup pipa minyak penghubung tanki (konservator) ke dalam trafo (sebelum relai bucholz), serta adanya gas pemisah oksigen (gas nitrogen yang bertekanan tinggi) diisikan melaui pipa yang disambung pada bagian bawah trafo kemudian akan menuju keruang yang tidak terisi minyak.

b. Thermometer pengukur langsung, Thermometer pengukur langsung banyak digunakan pada instalasi tegangan tinggi/Gardu Induk , seperti pada ruang kontrol, ruang relai, ruang PLC dll. Suhu ruangan dicatat secara periodik pada formulir yang telah disiapkan dan dievaluasi sebagai bahan laporan.

c. Thermometer pengukur tidak langsung, Termometer pengukur tidak langsung banyak digunakan pada instalasi tegangan tinggi/ transformator yang berfungsi untuk mengetahui perubahan suhu minyak maupun belitan transformator. Suhu minyak dan belitan trafo dicatat secara periodik/berkala, pada formulir yang telah disiapkan dan dievaluasi sebagai laporan.

12. Relai Proteksi Transformator dan Fungsinya

Jenis relai proteksi pada trafo tenaga adalah sebagai berikut:

a. Relai arus lebih (over current relay), berfungsi untuk mengamankan transformator terhadap gangguan hubung singkat antar fasa didalam maupun diluar daerah pengaman transformator. Juga diharapkan relai ini mempunyai sifat komplementer dengan relai beban lebih, relai ini berfungsi pula sebagai pengaman cadangan pada bagian instalasi lainnya.

b. Relai Diferensial, relai ini berfungsi untuk mengamankan transformator terhadap gangguan hubung singkat yang terjadi didalam daerah pengaman.

c. Relai gangguan tanah terbatas (Restricted Earth fault Relay ), relai ini berfungsi untuk mengamankan transformator terhadap tanah didalam daerah pengaman transformator, khususnya untuk gangguan didekat titik netral yang tidak dapat dirasakan oleh relai differensial.

d. Relai arus lebih berarah, Directional Over Current Relay atau yang lebih dikenal dengan Relai arus lebih yang mempunyai arah tertentu merupakan Relai Pengaman yang bekerja karena adanya besaran arus dan tegangan yang dapat membedakan arah arus gangguan. Relai ini mempunyai 2 buah parameter ukur yaitu tegangan dan arus yang masuk ke dalam relai untuk membedakan arah arus ke depan atau arah arus ke belakang, pada pentanahan titik netral trafo dengan menggunakan tahanan. Relai ini dipasang pada penyulang 20 KV.

Bekerjanya relai ini berdasarkan adanya sumber arus dari ZCT (Zero Current Transformer) dan sumber tegangan dari PT (Potential Transformers). Sumber tegangan PT umumnya menggunakan rangkaian Open-Delta, tetapi tidak menutup kemungkinan ada yang menggunakan koneksi langsung 3 Phasa. Relai ini terpasang pada jaringan tegangan tinggi, tegangan menengah, juga pada pengaman transformator tenaga, dan berfungsi untuk mengamankan peralatan listrik akibat adanya gangguan phasa-phasa maupun Phasa ke tanah. Untuk membedakan arah tersebut maka salah satu phasa dari arus harus dibandingakan dengan Tegangan pada phasa yang lain.

e. Relay connections, adalah sudut perbedaan antara arus dengan tegangan masukan relai pada power faktor satu. Relai maximum torque angle adalah perbedaan sudut antara arus dengan tegangan pada relai yang menghasilkan torsi maksimum.

f. Relai gangguan tanah, relai ini berfungsi untuk mengamankan transformator jika terjadi gangguan hubung tanah didalam dan diluar daerah pengaman transformator. Relai arah hubung tanah memerlukan operating signal dan polarising signal. Operating signal diperoleh dari arus residual melalui rangkaian trafo arus penghantar (Iop = 3Io) sedangkan polarising signal diperoleh dari tegangan residual. Tegangan residual dapat diperoleh dari rangkaian sekunder open delta trafo tegangan.

g. Relai tangki tanah, relai ini berfungsi untuk mengamankan transformator terhadap hubung singkat antara kumparan fasa dengan tangki transformator dan transformator yang titik netralnya ditanahkan. Relai bekerja sebagai pengaman jika terjadi arus mengalir dari tangki akibat gangguan fasa ke tangki atau dari instalasi Bantu seperti motor kipas, sirkulasi dan motor-motor bantu, pemanas dll.
Pengaman arus ini sebagai pengganti relai diferensial, sebab sistim relai pengaman tangki biasanya dipasang pada trafo yang tidak dilengkapi trafo arus disisi primer dan biasanya pada trafo dengan kapasitas kecil. Trafo dipasang diatas isolator sehingga tidak terhubung ke tanah kemudian dengan menggunakan kabel pentanahan yang dilewatkan melalui trafo arus dengan tingkat isolasi dan ratio yang kecil, kemudian tersambung pada relai tangki tanah dengan ratio Trafo Arus(CT) antara 300 s/d 500 dengan sisi sekunder hanya 1 Amp.

13. Announciator Sistem Instalasi Tegangan Tinggi

Announciator adalah indikator kejadian pada saat terjadi ketidaknormalan pada sistem instalasi tegangan tinggi, baik secara individu maupun secara bersama. Announciator terjadi bersamaan dengan relai yang bekerja akibat jika terjadi ketidaknormalan pada peralatan tersebut. Annunciator biasanya berbentuk petunjuk tulisan yang pada kondisi normal tidak ada penunjukan, bila terjadi ketidaknormalan maka lampu didalam indikator tersebut menyala sesuai dengan kondisi sistem pada saat tersebut. Kumpulan indikator-indikator tersebut biasanya disebut sebagai announciator.

Announciator yang terlengkap pada saat sekarang adalah pada instalasi gardu induk SF6, sebab pada system GIS banyak sekali kondisi yang perlu di pantau seperti tekanan gas, kelembaban gas SF6 disetiap kompartemen, posisi kontak PMT, PMS baik PMS line, PMS Rel maupun PMS tanah dll. Untuk itu pembahasan tentang annunciator akan diambil dari sistem annunciatornya gardu induk SF6. seperti. Annunciator pada bay penghantar (SUTT maupun SKTT), Transformator dan Koppel.

berikut jenis-jenis alarm:






READ MORE - Komponen-Komponen Transformator / Transformer / Trafo
Category: 0 komentar

cursor